extension | φ:Q→Aut N | d | ρ | Label | ID |
C33⋊1(C3×C6) = C34⋊S3 | φ: C3×C6/C1 → C3×C6 ⊆ Aut C33 | 27 | | C3^3:1(C3xC6) | 486,103 |
C33⋊2(C3×C6) = (C3×He3)⋊C6 | φ: C3×C6/C1 → C3×C6 ⊆ Aut C33 | 27 | 18+ | C3^3:2(C3xC6) | 486,127 |
C33⋊3(C3×C6) = 3+ 1+4⋊C2 | φ: C3×C6/C1 → C3×C6 ⊆ Aut C33 | 27 | 18+ | C3^3:3(C3xC6) | 486,236 |
C33⋊4(C3×C6) = C2×C32⋊He3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 54 | | C3^3:4(C3xC6) | 486,196 |
C33⋊5(C3×C6) = C2×C33⋊C32 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 54 | 9 | C3^3:5(C3xC6) | 486,215 |
C33⋊6(C3×C6) = C2×3+ 1+4 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 54 | 9 | C3^3:6(C3xC6) | 486,254 |
C33⋊7(C3×C6) = C3×C33⋊C6 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 18 | 6 | C3^3:7(C3xC6) | 486,116 |
C33⋊8(C3×C6) = C32×C32⋊C6 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | | C3^3:8(C3xC6) | 486,222 |
C33⋊9(C3×C6) = C3×S3×He3 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | | C3^3:9(C3xC6) | 486,223 |
C33⋊10(C3×C6) = C3×He3⋊4S3 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | | C3^3:10(C3xC6) | 486,229 |
C33⋊11(C3×C6) = C6×C3≀C3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 54 | | C3^3:11(C3xC6) | 486,210 |
C33⋊12(C3×C6) = C3×C6×He3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3:12(C3xC6) | 486,251 |
C33⋊13(C3×C6) = S3×C34 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 162 | | C3^3:13(C3xC6) | 486,256 |
C33⋊14(C3×C6) = C3⋊S3×C33 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 54 | | C3^3:14(C3xC6) | 486,257 |
C33⋊15(C3×C6) = C32×C33⋊C2 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 54 | | C3^3:15(C3xC6) | 486,258 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C33.1(C3×C6) = C2×C32.24He3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.1(C3xC6) | 486,63 |
C33.2(C3×C6) = C2×C33.C32 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.2(C3xC6) | 486,64 |
C33.3(C3×C6) = C2×C33.3C32 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.3(C3xC6) | 486,65 |
C33.4(C3×C6) = C2×C32.27He3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.4(C3xC6) | 486,66 |
C33.5(C3×C6) = C2×C32.28He3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.5(C3xC6) | 486,67 |
C33.6(C3×C6) = C2×C32.29He3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.6(C3xC6) | 486,68 |
C33.7(C3×C6) = C2×C33.7C32 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.7(C3xC6) | 486,69 |
C33.8(C3×C6) = C2×C9⋊He3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.8(C3xC6) | 486,198 |
C33.9(C3×C6) = C2×C32.23C33 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.9(C3xC6) | 486,199 |
C33.10(C3×C6) = C2×C92⋊7C3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.10(C3xC6) | 486,202 |
C33.11(C3×C6) = C2×C92⋊4C3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.11(C3xC6) | 486,203 |
C33.12(C3×C6) = C2×C92⋊5C3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.12(C3xC6) | 486,204 |
C33.13(C3×C6) = C2×C92⋊8C3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.13(C3xC6) | 486,205 |
C33.14(C3×C6) = C2×C92⋊9C3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 162 | | C3^3.14(C3xC6) | 486,206 |
C33.15(C3×C6) = C2×He3.C32 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 54 | 9 | C3^3.15(C3xC6) | 486,216 |
C33.16(C3×C6) = C2×He3⋊C32 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 54 | 9 | C3^3.16(C3xC6) | 486,217 |
C33.17(C3×C6) = C2×C32.C33 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 54 | 9 | C3^3.17(C3xC6) | 486,218 |
C33.18(C3×C6) = C2×C9.2He3 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 54 | 9 | C3^3.18(C3xC6) | 486,219 |
C33.19(C3×C6) = C2×3- 1+4 | φ: C3×C6/C2 → C32 ⊆ Aut C33 | 54 | 9 | C3^3.19(C3xC6) | 486,255 |
C33.20(C3×C6) = C3×C32⋊C18 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | | C3^3.20(C3xC6) | 486,93 |
C33.21(C3×C6) = C9×C32⋊C6 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.21(C3xC6) | 486,98 |
C33.22(C3×C6) = C34⋊C6 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 18 | 6 | C3^3.22(C3xC6) | 486,102 |
C33.23(C3×C6) = C34.C6 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 18 | 6 | C3^3.23(C3xC6) | 486,104 |
C33.24(C3×C6) = C9⋊He3⋊C2 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.24(C3xC6) | 486,107 |
C33.25(C3×C6) = S3×C3≀C3 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 18 | 6 | C3^3.25(C3xC6) | 486,117 |
C33.26(C3×C6) = S3×He3.C3 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.26(C3xC6) | 486,120 |
C33.27(C3×C6) = S3×He3⋊C3 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.27(C3xC6) | 486,123 |
C33.28(C3×C6) = S3×C3.He3 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.28(C3xC6) | 486,124 |
C33.29(C3×C6) = C3×S3×3- 1+2 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | | C3^3.29(C3xC6) | 486,225 |
C33.30(C3×C6) = S3×C9○He3 | φ: C3×C6/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.30(C3xC6) | 486,226 |
C33.31(C3×C6) = C2×C33⋊C9 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 54 | | C3^3.31(C3xC6) | 486,73 |
C33.32(C3×C6) = C2×C32.19He3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.32(C3xC6) | 486,74 |
C33.33(C3×C6) = C2×C32.20He3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.33(C3xC6) | 486,75 |
C33.34(C3×C6) = C2×He3⋊C9 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.34(C3xC6) | 486,77 |
C33.35(C3×C6) = C2×3- 1+2⋊C9 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.35(C3xC6) | 486,78 |
C33.36(C3×C6) = C6×C32⋊C9 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.36(C3xC6) | 486,191 |
C33.37(C3×C6) = C2×C92⋊3C3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.37(C3xC6) | 486,193 |
C33.38(C3×C6) = C18×He3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.38(C3xC6) | 486,194 |
C33.39(C3×C6) = C18×3- 1+2 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.39(C3xC6) | 486,195 |
C33.40(C3×C6) = C2×C34.C3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 54 | | C3^3.40(C3xC6) | 486,197 |
C33.41(C3×C6) = C2×C9⋊3- 1+2 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.41(C3xC6) | 486,200 |
C33.42(C3×C6) = C2×C33.31C32 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.42(C3xC6) | 486,201 |
C33.43(C3×C6) = C6×He3.C3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.43(C3xC6) | 486,211 |
C33.44(C3×C6) = C6×He3⋊C3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.44(C3xC6) | 486,212 |
C33.45(C3×C6) = C6×C3.He3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.45(C3xC6) | 486,213 |
C33.46(C3×C6) = C2×C9.He3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 54 | 3 | C3^3.46(C3xC6) | 486,214 |
C33.47(C3×C6) = C3×C6×3- 1+2 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.47(C3xC6) | 486,252 |
C33.48(C3×C6) = C6×C9○He3 | φ: C3×C6/C6 → C3 ⊆ Aut C33 | 162 | | C3^3.48(C3xC6) | 486,253 |
C33.49(C3×C6) = S3×C92 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 162 | | C3^3.49(C3xC6) | 486,92 |
C33.50(C3×C6) = S3×C32⋊C9 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.50(C3xC6) | 486,95 |
C33.51(C3×C6) = S3×C9⋊C9 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 162 | | C3^3.51(C3xC6) | 486,97 |
C33.52(C3×C6) = S3×C32×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 162 | | C3^3.52(C3xC6) | 486,221 |
C33.53(C3×C6) = C3⋊S3×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.53(C3xC6) | 486,228 |
C33.54(C3×C6) = C3⋊S3×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.54(C3xC6) | 486,231 |
C33.55(C3×C6) = C3⋊S3×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.55(C3xC6) | 486,233 |
C33.56(C3×C6) = C2×C3.C92 | central extension (φ=1) | 486 | | C3^3.56(C3xC6) | 486,62 |
C33.57(C3×C6) = C6×C9⋊C9 | central extension (φ=1) | 486 | | C3^3.57(C3xC6) | 486,192 |